extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C22.D4)⋊1C2 = C24.31D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):1C2 | 128,754 |
(C2×C22.D4)⋊2C2 = C24.94D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):2C2 | 128,1137 |
(C2×C22.D4)⋊3C2 = C24.243C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):3C2 | 128,1138 |
(C2×C22.D4)⋊4C2 = C23.311C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):4C2 | 128,1143 |
(C2×C22.D4)⋊5C2 = C24.95D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):5C2 | 128,1144 |
(C2×C22.D4)⋊6C2 = C23.318C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):6C2 | 128,1150 |
(C2×C22.D4)⋊7C2 = C23.322C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):7C2 | 128,1154 |
(C2×C22.D4)⋊8C2 = C24.258C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):8C2 | 128,1157 |
(C2×C22.D4)⋊9C2 = C24.262C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):9C2 | 128,1162 |
(C2×C22.D4)⋊10C2 = C24.269C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):10C2 | 128,1175 |
(C2×C22.D4)⋊11C2 = C23.345C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):11C2 | 128,1177 |
(C2×C22.D4)⋊12C2 = C24.276C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):12C2 | 128,1187 |
(C2×C22.D4)⋊13C2 = C23.356C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):13C2 | 128,1188 |
(C2×C22.D4)⋊14C2 = C24.278C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):14C2 | 128,1189 |
(C2×C22.D4)⋊15C2 = C24.282C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):15C2 | 128,1193 |
(C2×C22.D4)⋊16C2 = C23.364C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):16C2 | 128,1196 |
(C2×C22.D4)⋊17C2 = C24.290C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):17C2 | 128,1203 |
(C2×C22.D4)⋊18C2 = C23.401C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):18C2 | 128,1233 |
(C2×C22.D4)⋊19C2 = C23.434C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):19C2 | 128,1266 |
(C2×C22.D4)⋊20C2 = C23.439C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):20C2 | 128,1271 |
(C2×C22.D4)⋊21C2 = C24.327C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):21C2 | 128,1286 |
(C2×C22.D4)⋊22C2 = C23.457C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):22C2 | 128,1289 |
(C2×C22.D4)⋊23C2 = C23.502C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):23C2 | 128,1334 |
(C2×C22.D4)⋊24C2 = C24⋊9D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):24C2 | 128,1345 |
(C2×C22.D4)⋊25C2 = C24.587C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):25C2 | 128,1350 |
(C2×C22.D4)⋊26C2 = C23.530C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):26C2 | 128,1362 |
(C2×C22.D4)⋊27C2 = C24.377C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):27C2 | 128,1393 |
(C2×C22.D4)⋊28C2 = C23.571C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):28C2 | 128,1403 |
(C2×C22.D4)⋊29C2 = C23.572C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):29C2 | 128,1404 |
(C2×C22.D4)⋊30C2 = C23.573C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):30C2 | 128,1405 |
(C2×C22.D4)⋊31C2 = C23.578C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):31C2 | 128,1410 |
(C2×C22.D4)⋊32C2 = C23.581C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):32C2 | 128,1413 |
(C2×C22.D4)⋊33C2 = C24.389C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):33C2 | 128,1414 |
(C2×C22.D4)⋊34C2 = C23.593C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):34C2 | 128,1425 |
(C2×C22.D4)⋊35C2 = C24.403C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):35C2 | 128,1428 |
(C2×C22.D4)⋊36C2 = C23.597C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):36C2 | 128,1429 |
(C2×C22.D4)⋊37C2 = C24.407C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):37C2 | 128,1433 |
(C2×C22.D4)⋊38C2 = C23.603C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):38C2 | 128,1435 |
(C2×C22.D4)⋊39C2 = C23.605C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):39C2 | 128,1437 |
(C2×C22.D4)⋊40C2 = C23.606C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):40C2 | 128,1438 |
(C2×C22.D4)⋊41C2 = C23.608C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):41C2 | 128,1440 |
(C2×C22.D4)⋊42C2 = C24.411C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):42C2 | 128,1441 |
(C2×C22.D4)⋊43C2 = C24.412C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):43C2 | 128,1442 |
(C2×C22.D4)⋊44C2 = C24.459C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):44C2 | 128,1545 |
(C2×C22.D4)⋊45C2 = C24.166D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):45C2 | 128,1581 |
(C2×C22.D4)⋊46C2 = C24.598C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):46C2 | 128,1586 |
(C2×C22.D4)⋊47C2 = C2×C23.7D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):47C2 | 128,1756 |
(C2×C22.D4)⋊48C2 = C2×C23⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):48C2 | 128,2177 |
(C2×C22.D4)⋊49C2 = C2×C23.38C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):49C2 | 128,2179 |
(C2×C22.D4)⋊50C2 = C2×C22.32C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):50C2 | 128,2182 |
(C2×C22.D4)⋊51C2 = C2×C22.33C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):51C2 | 128,2183 |
(C2×C22.D4)⋊52C2 = C2×C22.34C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):52C2 | 128,2184 |
(C2×C22.D4)⋊53C2 = C2×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):53C2 | 128,2186 |
(C2×C22.D4)⋊54C2 = C2×D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):54C2 | 128,2195 |
(C2×C22.D4)⋊55C2 = C2×D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):55C2 | 128,2196 |
(C2×C22.D4)⋊56C2 = C2×C22.45C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):56C2 | 128,2201 |
(C2×C22.D4)⋊57C2 = C2×C22.47C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):57C2 | 128,2203 |
(C2×C22.D4)⋊58C2 = C2×C22.53C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):58C2 | 128,2211 |
(C2×C22.D4)⋊59C2 = C22.74C25 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):59C2 | 128,2217 |
(C2×C22.D4)⋊60C2 = C22.80C25 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):60C2 | 128,2223 |
(C2×C22.D4)⋊61C2 = C22.102C25 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):61C2 | 128,2245 |
(C2×C22.D4)⋊62C2 = C2×C22.54C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):62C2 | 128,2257 |
(C2×C22.D4)⋊63C2 = C2×C22.56C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4):63C2 | 128,2259 |
(C2×C22.D4)⋊64C2 = C22.122C25 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):64C2 | 128,2265 |
(C2×C22.D4)⋊65C2 = C22.123C25 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):65C2 | 128,2266 |
(C2×C22.D4)⋊66C2 = C22.124C25 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4):66C2 | 128,2267 |
(C2×C22.D4)⋊67C2 = C2×C22.19C24 | φ: trivial image | 32 | | (C2xC2^2.D4):67C2 | 128,2167 |
(C2×C22.D4)⋊68C2 = C2×C23.36C23 | φ: trivial image | 64 | | (C2xC2^2.D4):68C2 | 128,2171 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C22.D4).1C2 = C23⋊C8⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4).1C2 | 128,200 |
(C2×C22.D4).2C2 = C24.26D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4).2C2 | 128,622 |
(C2×C22.D4).3C2 = C24.174C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4).3C2 | 128,631 |
(C2×C22.D4).4C2 = C2×C23.D4 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 32 | | (C2xC2^2.D4).4C2 | 128,851 |
(C2×C22.D4).5C2 = C24.195C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).5C2 | 128,1054 |
(C2×C22.D4).6C2 = C24.204C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).6C2 | 128,1067 |
(C2×C22.D4).7C2 = C23.241C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).7C2 | 128,1091 |
(C2×C22.D4).8C2 = C24.223C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).8C2 | 128,1106 |
(C2×C22.D4).9C2 = C24.225C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).9C2 | 128,1108 |
(C2×C22.D4).10C2 = C23.313C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).10C2 | 128,1145 |
(C2×C22.D4).11C2 = C24.563C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).11C2 | 128,1151 |
(C2×C22.D4).12C2 = C24.279C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).12C2 | 128,1190 |
(C2×C22.D4).13C2 = C24.289C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).13C2 | 128,1202 |
(C2×C22.D4).14C2 = C24.299C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).14C2 | 128,1218 |
(C2×C22.D4).15C2 = C23.388C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).15C2 | 128,1220 |
(C2×C22.D4).16C2 = C23.398C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).16C2 | 128,1230 |
(C2×C22.D4).17C2 = C24.326C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).17C2 | 128,1285 |
(C2×C22.D4).18C2 = C23.458C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).18C2 | 128,1290 |
(C2×C22.D4).19C2 = C23.514C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).19C2 | 128,1346 |
(C2×C22.D4).20C2 = C24.589C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).20C2 | 128,1355 |
(C2×C22.D4).21C2 = C24.378C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).21C2 | 128,1395 |
(C2×C22.D4).22C2 = C23.574C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).22C2 | 128,1406 |
(C2×C22.D4).23C2 = C23.580C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).23C2 | 128,1412 |
(C2×C22.D4).24C2 = C24.394C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).24C2 | 128,1419 |
(C2×C22.D4).25C2 = C24.401C23 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).25C2 | 128,1426 |
(C2×C22.D4).26C2 = C23.595C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).26C2 | 128,1427 |
(C2×C22.D4).27C2 = C23.607C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).27C2 | 128,1439 |
(C2×C22.D4).28C2 = C23.617C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).28C2 | 128,1449 |
(C2×C22.D4).29C2 = C23.618C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).29C2 | 128,1450 |
(C2×C22.D4).30C2 = C23.624C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).30C2 | 128,1456 |
(C2×C22.D4).31C2 = C23.714C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).31C2 | 128,1546 |
(C2×C22.D4).32C2 = C23.753C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).32C2 | 128,1585 |
(C2×C22.D4).33C2 = C2×C22.46C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).33C2 | 128,2202 |
(C2×C22.D4).34C2 = C2×C22.57C24 | φ: C2/C1 → C2 ⊆ Out C2×C22.D4 | 64 | | (C2xC2^2.D4).34C2 | 128,2260 |
(C2×C22.D4).35C2 = C4×C22.D4 | φ: trivial image | 64 | | (C2xC2^2.D4).35C2 | 128,1033 |