Extensions 1→N→G→Q→1 with N=C2×C22.D4 and Q=C2

Direct product G=N×Q with N=C2×C22.D4 and Q=C2
dρLabelID
C22×C22.D464C2^2xC2^2.D4128,2166

Semidirect products G=N:Q with N=C2×C22.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C22.D4)⋊1C2 = C24.31D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):1C2128,754
(C2×C22.D4)⋊2C2 = C24.94D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):2C2128,1137
(C2×C22.D4)⋊3C2 = C24.243C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):3C2128,1138
(C2×C22.D4)⋊4C2 = C23.311C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):4C2128,1143
(C2×C22.D4)⋊5C2 = C24.95D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):5C2128,1144
(C2×C22.D4)⋊6C2 = C23.318C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):6C2128,1150
(C2×C22.D4)⋊7C2 = C23.322C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):7C2128,1154
(C2×C22.D4)⋊8C2 = C24.258C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):8C2128,1157
(C2×C22.D4)⋊9C2 = C24.262C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):9C2128,1162
(C2×C22.D4)⋊10C2 = C24.269C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):10C2128,1175
(C2×C22.D4)⋊11C2 = C23.345C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):11C2128,1177
(C2×C22.D4)⋊12C2 = C24.276C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):12C2128,1187
(C2×C22.D4)⋊13C2 = C23.356C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):13C2128,1188
(C2×C22.D4)⋊14C2 = C24.278C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):14C2128,1189
(C2×C22.D4)⋊15C2 = C24.282C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):15C2128,1193
(C2×C22.D4)⋊16C2 = C23.364C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):16C2128,1196
(C2×C22.D4)⋊17C2 = C24.290C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):17C2128,1203
(C2×C22.D4)⋊18C2 = C23.401C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):18C2128,1233
(C2×C22.D4)⋊19C2 = C23.434C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):19C2128,1266
(C2×C22.D4)⋊20C2 = C23.439C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):20C2128,1271
(C2×C22.D4)⋊21C2 = C24.327C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):21C2128,1286
(C2×C22.D4)⋊22C2 = C23.457C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):22C2128,1289
(C2×C22.D4)⋊23C2 = C23.502C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):23C2128,1334
(C2×C22.D4)⋊24C2 = C249D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):24C2128,1345
(C2×C22.D4)⋊25C2 = C24.587C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):25C2128,1350
(C2×C22.D4)⋊26C2 = C23.530C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):26C2128,1362
(C2×C22.D4)⋊27C2 = C24.377C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):27C2128,1393
(C2×C22.D4)⋊28C2 = C23.571C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):28C2128,1403
(C2×C22.D4)⋊29C2 = C23.572C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):29C2128,1404
(C2×C22.D4)⋊30C2 = C23.573C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):30C2128,1405
(C2×C22.D4)⋊31C2 = C23.578C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):31C2128,1410
(C2×C22.D4)⋊32C2 = C23.581C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):32C2128,1413
(C2×C22.D4)⋊33C2 = C24.389C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):33C2128,1414
(C2×C22.D4)⋊34C2 = C23.593C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):34C2128,1425
(C2×C22.D4)⋊35C2 = C24.403C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):35C2128,1428
(C2×C22.D4)⋊36C2 = C23.597C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):36C2128,1429
(C2×C22.D4)⋊37C2 = C24.407C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):37C2128,1433
(C2×C22.D4)⋊38C2 = C23.603C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):38C2128,1435
(C2×C22.D4)⋊39C2 = C23.605C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):39C2128,1437
(C2×C22.D4)⋊40C2 = C23.606C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):40C2128,1438
(C2×C22.D4)⋊41C2 = C23.608C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):41C2128,1440
(C2×C22.D4)⋊42C2 = C24.411C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):42C2128,1441
(C2×C22.D4)⋊43C2 = C24.412C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):43C2128,1442
(C2×C22.D4)⋊44C2 = C24.459C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):44C2128,1545
(C2×C22.D4)⋊45C2 = C24.166D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):45C2128,1581
(C2×C22.D4)⋊46C2 = C24.598C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):46C2128,1586
(C2×C22.D4)⋊47C2 = C2×C23.7D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):47C2128,1756
(C2×C22.D4)⋊48C2 = C2×C233D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):48C2128,2177
(C2×C22.D4)⋊49C2 = C2×C23.38C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):49C2128,2179
(C2×C22.D4)⋊50C2 = C2×C22.32C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):50C2128,2182
(C2×C22.D4)⋊51C2 = C2×C22.33C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):51C2128,2183
(C2×C22.D4)⋊52C2 = C2×C22.34C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):52C2128,2184
(C2×C22.D4)⋊53C2 = C2×C22.36C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):53C2128,2186
(C2×C22.D4)⋊54C2 = C2×D45D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):54C2128,2195
(C2×C22.D4)⋊55C2 = C2×D46D4φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):55C2128,2196
(C2×C22.D4)⋊56C2 = C2×C22.45C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):56C2128,2201
(C2×C22.D4)⋊57C2 = C2×C22.47C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):57C2128,2203
(C2×C22.D4)⋊58C2 = C2×C22.53C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):58C2128,2211
(C2×C22.D4)⋊59C2 = C22.74C25φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):59C2128,2217
(C2×C22.D4)⋊60C2 = C22.80C25φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):60C2128,2223
(C2×C22.D4)⋊61C2 = C22.102C25φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):61C2128,2245
(C2×C22.D4)⋊62C2 = C2×C22.54C24φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):62C2128,2257
(C2×C22.D4)⋊63C2 = C2×C22.56C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4):63C2128,2259
(C2×C22.D4)⋊64C2 = C22.122C25φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):64C2128,2265
(C2×C22.D4)⋊65C2 = C22.123C25φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):65C2128,2266
(C2×C22.D4)⋊66C2 = C22.124C25φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4):66C2128,2267
(C2×C22.D4)⋊67C2 = C2×C22.19C24φ: trivial image32(C2xC2^2.D4):67C2128,2167
(C2×C22.D4)⋊68C2 = C2×C23.36C23φ: trivial image64(C2xC2^2.D4):68C2128,2171

Non-split extensions G=N.Q with N=C2×C22.D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C22.D4).1C2 = C23⋊C8⋊C2φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4).1C2128,200
(C2×C22.D4).2C2 = C24.26D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4).2C2128,622
(C2×C22.D4).3C2 = C24.174C23φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4).3C2128,631
(C2×C22.D4).4C2 = C2×C23.D4φ: C2/C1C2 ⊆ Out C2×C22.D432(C2xC2^2.D4).4C2128,851
(C2×C22.D4).5C2 = C24.195C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).5C2128,1054
(C2×C22.D4).6C2 = C24.204C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).6C2128,1067
(C2×C22.D4).7C2 = C23.241C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).7C2128,1091
(C2×C22.D4).8C2 = C24.223C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).8C2128,1106
(C2×C22.D4).9C2 = C24.225C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).9C2128,1108
(C2×C22.D4).10C2 = C23.313C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).10C2128,1145
(C2×C22.D4).11C2 = C24.563C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).11C2128,1151
(C2×C22.D4).12C2 = C24.279C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).12C2128,1190
(C2×C22.D4).13C2 = C24.289C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).13C2128,1202
(C2×C22.D4).14C2 = C24.299C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).14C2128,1218
(C2×C22.D4).15C2 = C23.388C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).15C2128,1220
(C2×C22.D4).16C2 = C23.398C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).16C2128,1230
(C2×C22.D4).17C2 = C24.326C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).17C2128,1285
(C2×C22.D4).18C2 = C23.458C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).18C2128,1290
(C2×C22.D4).19C2 = C23.514C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).19C2128,1346
(C2×C22.D4).20C2 = C24.589C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).20C2128,1355
(C2×C22.D4).21C2 = C24.378C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).21C2128,1395
(C2×C22.D4).22C2 = C23.574C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).22C2128,1406
(C2×C22.D4).23C2 = C23.580C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).23C2128,1412
(C2×C22.D4).24C2 = C24.394C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).24C2128,1419
(C2×C22.D4).25C2 = C24.401C23φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).25C2128,1426
(C2×C22.D4).26C2 = C23.595C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).26C2128,1427
(C2×C22.D4).27C2 = C23.607C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).27C2128,1439
(C2×C22.D4).28C2 = C23.617C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).28C2128,1449
(C2×C22.D4).29C2 = C23.618C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).29C2128,1450
(C2×C22.D4).30C2 = C23.624C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).30C2128,1456
(C2×C22.D4).31C2 = C23.714C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).31C2128,1546
(C2×C22.D4).32C2 = C23.753C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).32C2128,1585
(C2×C22.D4).33C2 = C2×C22.46C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).33C2128,2202
(C2×C22.D4).34C2 = C2×C22.57C24φ: C2/C1C2 ⊆ Out C2×C22.D464(C2xC2^2.D4).34C2128,2260
(C2×C22.D4).35C2 = C4×C22.D4φ: trivial image64(C2xC2^2.D4).35C2128,1033

׿
×
𝔽